

POWER QUALITY MONITORING

LINAX PQ3000 - LINAX PQ5000

Comprehensive instrument for power quality monitoring in electric mains

Traditionally, power quality monitoring is only conducted as a reaction to trouble such as device failure, plant malfunctions, process interruptions or communication breakdowns. However, all these problems cost money and nobody wants to experience the same thing again just to be able to create a corresponding record for analysis.

Therefore, the biggest advantage of continuous power quality monitoring is that users put themselves in a position to proactively build up their knowledge thus increasing system availability. LINAX PQ3000 / PQ5000 helps to detect trouble before it can do any damage and to provide data for the identification of the root cause in case an event actually occurs.

PQ3000 / PQ5000 is a Class A device according to the IEC 61000-4-30 Ed.3 power quality standard.

It can thus provide reliable and comparable information for regulatory agencies, negotiations with energy suppliers or internal quality control. Conformity reports on various standards can be generated directly via the website of the device.

CLEAR

High resolution, colour TFT display for the pin-sharp indication of measured data Consistently visible status information (alarms, password protection, data recording, time/date and much more) Clear Design

INTUITIVE

Language-specific plain text menu navigation Topical arrangement of measured value information for quick data access Service area for maintenance and commissioning

MULTIFUNCTIONAL

Certified power quality monitoring according to IEC 61000-4-30 Ed. 3, class A Acquisition of energy consumption: Meters and load profiles Plant condition monitoring

FLEXIBLE

Applicable in all network configurations without hardware variance Freely selectable measured variables for mean values and meters Freely definable alarm conditions with summary alarm and recording

SCALABLE

Combinable device design (functionality, interfaces, I/Os, auxiliary energy) May be integrated directly in the SMARTCOLLECT software

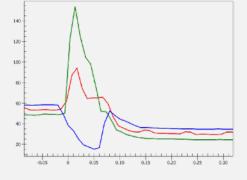
AVOIDING POWER QUALITY PROBLEMS - THROUGH CONTINUOUS MONITORING

Disruptions of the energy supply may result in production or equipment outages. Often people do not react until great financial damage has been caused. Yet, many of these incidents could be avoided if the signs were recognised in the continuous monitoring of the situation. Any form of power quality monitoring provides both a statistical evaluation allowing the comparison with standards (e.g. EN 50160) or supply contracts as well as records of events in the grid (e.g. voltage dips). This facilitates the analysis of causes and effects.

POWER QUALITY EVALUATION	DESCRIPTION	BENEFIT
Preter frequency 0	All relevant parameters of the supply voltage are monitored, statistically averaged and compared to specified values. This way, one can either prove compliance or call attention to possible problems. In addition to the voltages, also magnitude, harmonic content and unbalance of currents are recorded. But, a statistical evaluation is carried out only if corresponding limit values exist, for example for harmonics in IEEE 519.	Verification of the compliance with standards (e.g. EN 50160) or contracts between energy suppliers and energy consumers. Users may adapt the specified values as they desire. By observing changes in the results, one can detect any deterioration of power quality early on and identify the causes. Introduced improvements can be verified immediately.
<figure></figure>	All voltages are monitored for disturbances, such as dip, interruption or swell. These incidents are registered as event. A statistical evaluation is not required because there is no limitation for such events. An event recording comprises the waveshape of all voltages and currents upon occurrence of the event as well as the course of the corresponding RMS half cycle values for the entire duration of the event (max. 3 min.).	The evaluation of malfunction recording lets you identify the cause of the malfunction and - at best - establish a correlation with the events witnessed (such as outage of control systems or equipment). Suitable remedies may then be derived.

POWER QUALITY DATA EXCHANGE

LINAX PQ3000 / PQ5000 stores the acquired power quality data in the standardized Power Quality Data Interchange Format (PQDIF) according to IEEE 1159.3.


Many evaluation programs for the analysis of power quality data support this data format, e.g. SMARTCOLLECT PM20 of Camille Bauer Metrawatt or PQView of Electrotek Concepts. The storage principle provides daily PQDIF files containing either statistical data, histograms or event recordings. The creation is done shortly after midnight for the past day.

All these files may also be generated manually via the service menu of the device at any time for the ongoing day.

MONITORED VOLTAGE PHENOMENON	CAUSES	POSSIBLE CONSEQUENTIAL PROBLEMS
Mains frequency	Loss of power generatorsLarge load changes	Instability of the mains power supply
Magnitude of supply voltage	• Changes in grid load	 Disruption of equipment System shut-down Loss of data
Flicker and rapid voltage changes (RVC)	Frequent load changesStart of engines	Flickering lightingImpairment of the performance of exposed people
Supply voltage dips and swells	 Large load changes Short circuit, contact to earth Thunderstorm Power supply overload Feed-in of renewable energies such as wind or photovoltaic energy 	 Disruption of equipment such as control or drive systems Operational interruption Data loss in control systems and computers
Voltage interruptions	 Short circuit Blown fuses Component failures Planned supply interruption 	Production stoppageProcess interruptionsData loss in control systems and computers
Supply voltage unbalance	Uneven load on phases due to one or two- phase consumers	 Current in the neutral conductor Overload / overheating of equipment Increase of harmonics
Voltage harmonics	Non-linear loads such as frequency converters, rectifiers, switching power supplies, arc furnaces, computers, fluorescent tubes etc.	 Reduction of machine efficiency Increased energy losses Overload / overheating of equipment Current in the neutral conductor
Voltage interharmonics, mains signalling voltage on the supply voltage	Frequency converters and similar control devices	FlickerMalfunction of ripple control

Current (magnitude, harmonics, interharmonics, events)

In parallel with the voltages the corresponding current values are recorded in the same manner.

Current course during voltage dips in the mains

5

MEASURED VALUES

MEASURED VALUE GROUP INSTANTANEOUS VALUES U, I, IMS, P, Q, S, PF, LF, QF Angle between voltage phasors Min/max of instantaneous values with time stamp	APPLICATION Transparent monitoring of present system state Fault detection, connection check, sense of rotation check Determination of grid variable variance with time reference
EXTENDED REACTIVE POWER ANALYSIS Total reactive power, fundamental frequency, harmonics cos¢, tan¢ of fundamental frequency with min values in all quadrants	Reactive power compensation Verification of specified power factor
HARMONICS ANALYSIS (ACCORDING TO IEC 61000-4-7) Total harmonics content THD U/I and TDD I Individual harmonics U/I up to 50th	Evaluation of the thermic load of equipment Analysis of system perturbation and consumer structure
IMBALANCE ANALYSIS Symmetrical components (positive, negative, zero sequence system) Imbalance (derived from symmetrical components) Deviation from U/I mean value	Equipment overload protection Failure/earth fault detection
 ENERGY BALANCE ANALYSIS Meters for the demand/supply of active/reactive power, high/low tariff, meters with selectable fundamental variable Power mean values active/reactive power, demand and supply, freely definable mean values (e.g. phase power, voltage, current and much more) Mean value trends 	Preparation of (internal) energy billing Determination of energy consumption versus time (load profile) for energy management or energy efficiency verification Energy consumption trend analysis for load management
OPERATING HOURS 3 operating hour counters with programmable running condition Operating hours of the device	Monitoring of service and maintenance intervals of equipments
POWER QUALITYParameters according to IEC 61000-4-30, Class AChap. 5.1Power frequencyChap. 5.2Magnitude of supply voltageChap. 5.3FlickerChap. 5.4Supply voltage dips / swellsChap. 5.5Voltage interruptionsChap. 5.7Supply voltage unbalanceChap. 5.8Voltage harmonicsChap. 5.9Voltage interharmonicsChap. 5.10Mains signalling voltage on the supply voltageChap. 5.11Rapid voltage changes (RVC)Chap. 5.13Current (magnitude, harmonics, interharmonics)	 Device type PQI-A FI2 (IEC 62586-1) Independent and accredited laboratory: Federal Institute of Metrology METAS. Tested at both 230V / 50Hz and 120V / 60Hz. Thanks to the certification according to IEC 62586-2 (standard for verifying compliance with IEC 61000-4-30) the device can serve as a reliable and comparable source of information for regulatory agencies, for negotiations with energy suppliers or for internal quality control. Generation of compliance reports by means of the device website. Improving the quality and reliability of the mains supply. Identifying causes of disruptions.

DATA RECORDING

Apart from the automatic recording of power quality statistics, the high-performance data logger provides the following recording options:

PERIODIC DATA

This feature allows to record the time course of measured variables. Averaged measurements or meter contents serve as base and are saved in regular intervals. Typical applications are the acquisition of load profiles (intervals of 10s to 1h) or the determination of the energy consumption from the difference of meter readings. For both categories pre-defined courses are available, based on the system power values, and as well courses for freely selectable basic quantities.

For further processing periodic data can be exported in Excel format for a definable time range.

• EVENTS

Here the occurence of events or alarms is recorded in form of a list with time information. A distinction is made between self-defined events (such as ON/OFF of limit states or monitoring functions) which the user can classify as alarm or event and the so-called operator list in which system events such as changes of the device configuration, reset operations, powering the device and many more are held.

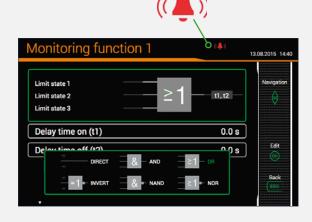
• PQ EVENTS

The occurrence of monitored PQ events is available in list form with the most important information about the events. Each entry can be directly selected to switch to the graphical event presentation. There the courses of the RMS half-cycle values and the waveshape during the disturbance are available, divided into presentations of all voltages, all currents and mixed displays.

Event lists, PQ event recordings, mean value courses (load profiles) and meter readings may be displayed directly at the device or via the device webpage.

Further analysis of the PQ events is possible by means of the SMARTCOLLECT PM20 software.

MONITORING AND ALARMING


The instrument supports the on-site analysis of acquired measured data in order to initiate directly immediate or delayed actions. This facilitates the protection of equipment and also monitoring of service intervals.

The following items are available:

- 12 limit values
- · 8 monitoring functions with 3 inputs each
- · 1 collective alarm as a combination of all monitoring functions
- 3 operating hourcounters with definable running conditions

The available digital outputs may be used directly for the transmission of limit values and monitoring functions as well as the resettable summary alarm.

A text may be allocated to each monitoring function and can be used for both the alarm and event list in the data logger.

The local operation at the device itself and the access via web interface are structured identically. One can access the available measured data, parametrise the instrument or use the service

functions via the language-specific, topically structured menu navigation. The status bar at the top right, uniformly shows the statuses of alarm monitoring, the password protection system, the data recording and the UPS as well as time and

Apart from the details of the PQ statistics, all data

are available via both the local GUI and the WEB

OPERATION

date.

interface of the device.

5

OPERATION AND ANALYSIS

PQ EASY-REPORT

- PDF creation via WEB interface of the device
- Selectable report duration
- · Selectable report scope (overview, statistic details, event overview)
- Direct compliance assessment of standards EN 50160, IEC 61000-2-2 / 2-4 / 2-12, GB/T, IEEE 519 or customer specific limits
- Customer specific logo in the report

CERTIFIED POWER QUALITY MONITORING

- · Independent certification by Federal Institute of Metrology
- Device type PQI-A FI2 acc. IEC 62586-1
- Proven at 230V / 50 Hz and 120V / 60Hz
- Flicker meter class F1
- Flagging concept: Multiphase approach in accordance with IEC 61000-4-30

Thanks to the certification according to IEC 62586-2 (standard for verifying compliance with IEC 61000-4-30) the device can serve as a reliable and comparable source of information for regulatory agencies, for negotiations with energy suppliers or for internal quality control.

TECHNICAL DATA

INPLITS

INFUIS	
NOMINAL CURRENT	1 5 A (max. 7.5 A)
Maximum	7.5A
Overload capacity	10 A permanent
	100 A, 5x1 s, interval 300 s
NOMINAL VOLTAGE	57.7 400 V _{LN} , 100 693 V _{LL}
Maximum	PQ3000: 480 VII, 832 VII (sinusoidal)
	PQ5000: 520 V_{IN} , 900 V_{II} (sinusoidal)
Overload capacity	PQ3000: $480 V_{LN}$, $832 V_{LL}$ permanent
	PQ5000: 520 V_{LN} , 900 V_{LL} permanent
	$800 \mathrm{V_{LN}}$, 1386 $\mathrm{V_{LL}}$, 10x1 s, interval 10 s
Nominal frequency	42 <u>50</u> 58 Hz, 50.5 <u>60</u> 69.5 Hz
Sampling rate	18 kHz

Sampling rate

POWER SUPPLY VARIANTS

Nominal voltage 100...230 V AC/DC (PQ5000) 110...230 V AC, 130...230 V DC (PQ3000) 110...200 V AC, 110...200 V DC (PQ3000) 24...48 V DC (PQ3000 / PQ5000) Consumption ≤ 27 VA, ≤ 12 W (PQ5000); ≤ 30 VA, ≤ 13 W (PQ3000)

UNINTERRUPTIBLE POWER SUPPLY (UPS)

Type (3.7 V)

VARTA Easy Pack EZPAckL, UL listed MH16707

TYPES OF CONNECTION

•	Single	phase or	split	phase	(2-phase system)
---	--------	----------	-------	-------	------------------

3 or 4-wire balanced load

- 3-wire balanced load [2U, 1]]
- · 3-wire unbalanced load, Aron connection
- · 3 or 4-wire unbalanced load
- 4-wire unbalanced load. Open-Y

I/O-INTERFACE

ANALOG OUTPUTS Linearisation Range Accuracy

Burden

RELAYS

Contacts

Load capacity

(optional) Linear, kinked ± 20 mA (24 mA max.) ± 0.2 % von 20 mA $\leq 500 \Omega$ (max. 10 V/20

(optional) Changeover contact 250 V AC, 2 A, 500 VA; 30 V DC, 2 A, 60 W

For grounded systems (optional)

DIGITAL INPUTS PASSIVE

Nominal voltage

12/24 V DC (30 V max.)

DIGITAL INPUTS ACTIVE (optional)

Open circuit voltage $\leq 15V$ **DIGITAL OUTPUTS** 2, Standard Nominal voltage

12/24 V DC (30 V max.)

to 1000/1 A

30 mA up to 1 A

FAULT CURRENT MONITORING

Measurement range 1 (1A)

Measuring transformer

Number of meas. channels 2 (2 measurement ranges each) Earth current measurement 1/1 up to 1/1000 A 30 mA up to 1000 A

 Alarm limit Measurement range 2 (2mA)RCM with connection monitoring

- · Measuring transformer Residual current transformer 500/1 up
- Alarm limit

), bipolar		
0 mA)		

Storage temperature Temperature influence Long-term drift Others Relative air humidity Operating altitude Only to be used in buildings!

without UPS: -10 up to 15 up to 30 up to + 55 °C with UPS: 0 up to <u>15 up to 30</u> up to + 35 °C -25 to +70 °C 0.5 x basic uncertainty per 10 K 0.5 x basic uncertainty per year Application group II (IEC/EN 60688) <95% without condensation ≤2000 m above NN

MECHANICAL PROPERTIES

Housing material Flammability class Polycarbonate (Makrolon) V-0 according UL94, self-extinguishing, not dripping, free of halogen 800 g (PQ3000), 600g (PQ5000)

SAFETY

Weight

Current inputs are galvanically isolated from each other. Protection class Pollution degree Protection Measurement category

II (protective insulation, voltage inputs via protective impedance) 2

IP54 (front), IP30 (housing), IP20 (terminals) U: 600 V CAT III, I: 300 V CAT III

TEMPERATURE INPUTS (optional) Number of channels 2 Measurement sensor

Pt100 / PTC; 2-wire

BASIC UNCERTAINTY ACCORDING IEC/EN 60688 $\pm 0.1\%$

±0.2%

 $\pm 0.1^{\circ}$

Standard

optional

optional CC-B

IEC61850, NTP

PROFINET, LLDP, SNMP

9.6 to 115.2 kBaud

Voltage, current Power Power factor Frequency Imbalance U, I Harmonic THD U. I Active energy Reactive energy

±0.01 Hz ±0.5% ±0.5% ±0.5% Class 0.5S (IEC/EN 62 053-22) Class 0.5S (IEC/EN 62053-24)

10/100 MBit/s, full/half duplex, autonegotiation

Modbus/TCP, http, NTP (time synchronisation)

Ethernet 100BaseTX, RJ45 sockets, 2 ports

Ethernet 100BaseTX, RJ45-Buchsen, 2 ports

Standard (PQ5000), optional (PQ3000) RS-485, max. 1200 m (4000 ft)

± 2 minutes/month (15 to 30°C)

10/100 Mbit/s, full/half duplex, auto-negotiation

10/100 Mbit/s, full/half duplex, auto-negotiation

Ethernet 100Base TX; RJ45 socket

INTERFACES ETHERNET

Physics Mode Protocols

IEC61850 Physics Mode Protocol

PROFINET IO

Conformance class Physics Mode Protocol

MODBUS/RTU Physics

Baud rate TIME REFERENCE

Clock accuracy Synchronisation

via NTP server or GPS **ENVIRONMENTAL CONDITIONS, GENERAL INFORMATION**

Internal clock

Operating temperature

5

0R	DER CODE PQ3000	
1.	BASIC DEVICE FOR PANEL-MOUNTING	
	With TFT display	1
2.	INPUT FREQUENCY RANGE	
	Current transformer inputs, 42 <u>50/60</u> 69,5 Hz	1
3.	POWER SUPPLY	
	Nominal voltage 110 230 V AC, 130 230 V DC	1
	Nominal voltage 24 48 V DC	2
	Nominal voltage 110 200 V AC, 110 200 V DC	3
4.	BUS CONNECTION	-
	Ethernet (Modbus/TCP protocol+web server)	1
	Ethernet (Modbus/TCP+web server)+RS485 (Modbus/RTU)	2
5.	EXTENSION 1	-
•	Without	0
	2 relays	1
	2 analog outputs, bipolar (\pm 20 mA)	2
	4 analog outputs, bipolar (\pm 20 mA)	3
	4 digital inputs passive	4
	4 digital inputs active	5
	Fault current detection, 2 channels	6
	GPS connection module	7
	Temperature monitoring, 2 channels	Ċ
6.	EXTENSION 2	Ũ
0.	Without	0
	2 relavs	1
	2 analog outputs, bipolar (\pm 20 mA)	2
	4 analog outputs, bipolar (± 20 mA)	3
	4 digital inputs passive	4
	4 digital inputs active	5
	Fault current detection, 2 channels	6
	GPS connection module	7
	Profinet interface	Á
	IEC61850 interface	В
	Temperature monitoring, 2 channels	C
7.	EXTENSION 3	U
1.	Without	0
	2 analog outputs bipolar (\pm 20 mA)	2
	4 analog outputs bipolar (\pm 20 mA)	2
	4 digital inputs passive	3 4
	• • •	
	4 digital inputs active	5
	Fault current detection, 2 channels	6
	Uninterruptible power supply	8 C
•	Temperature monitoring, 2 channels	U
8.	TEST CERTIFICATE	0
	Without	0
	Test certificate in German	D
	Test certificate in English	Е

DIMENSIONAL DRAWING PQ3000

Panel cut-out

	KDEK CODE PQ3000	
1.	BASIC DEVICE FOR TOP-HAT RAIL MOUNTING	
	Without display	0
	With TFT display	1
2.	INPUT FREQUENCY RANGE	
	Current transformer inputs, 42 50/60 69,5 Hz	1
3.	POWER SUPPLY	
	Nominal voltage 100 230 V AC/DC	1
	Nominal voltage 24 48 V DC	2
4.	BUS CONNECTION	
	Ethernet (Modbus/TCP+web server) + RS485 (Modbus/RTU)	1
5.	UNINTERRUPTIBLE POWER SUPPLY	
	Without	0
	With uninterruptible power supply	1
6.		
	Without	0
	2 relays	1
	2 analog outputs, bipolar (\pm 20 mA)	2
	4 analog outputs, bipolar (\pm 20 mA)	3
	4 digital inputs passive	4
	4 digital inputs active	5
	Fault current detection, 2 channels	6
	GPS connection module	7
	Profinet interface	А
	IEC61850 interface	В
	Temperature monitoring, 2 channels	С
7.	EXTENSION 2	
	Without	0
	2 relays	1
	2 analog outputs, bipolar (\pm 20 mA)	2
	4 analog outputs, bipolar (\pm 20 mA)	3
	4 digital inputs passive	4
	4 digital inputs active	5
	Fault current detection, 2 channels	6
	GPS connection module	7
	Temperature monitoring, 2 channels	С
8.		
	Without	0
	Test certificate in German	D
	Test certificate in English	E
		_
A	CCESSORIES	ARTICLE NO
D	ocumentation on USB stick	156 027

Documentation on USB stick	156 027
Interface converter USB <> RS485	163 189
GPS receiver 16x-LVS, configured	181 131
Transformers for fault current detection see accessory current transform	iers

Maximum one extension with analog outputs may be provided per device.

DIMENSIONAL DRAWING PQ5000

EXTENSIONS PQ3000

SMARTCOLLECT

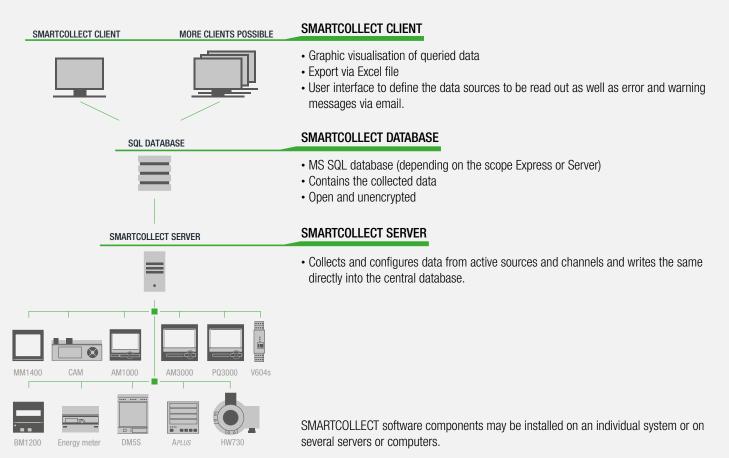
5

		An open set of the set
II.		
5		
* 184 1848	 100	6 🖗 🚍 🕺 🖏

SMARTCOLLECT is a data management software which can acquire measured data in an easy manner and store the same in an open MS SQL database. This software offers basic functionalities for data analysis and for easy energy monitoring as well as the easy preparation and disposal of reports.

Providing a mature graphic user interface, the SMARTCOLLECT software is clearly structured and easily operated.

SMARTCOLLECT is modularly designed and permits supplementing modules or functions at any time.


CUSTOMER BENEFITS

- Easy data communication via Modbus RTU / TCP, ECL and SmartControl-Direct
- Connection also via OPC
- Devices of Camille Bauer and Gossen Metrawatt are already predefined and selectable
 in the software
- Open for the devices of all manufacturers
- Data is stored in an open MS SQL database (depending on the scope Express or Server)
- Modular cost / performance model basic version may be extended at any time

MODULAR DESIGN

COMPONENTS

The SMARTCOLLECT data management software consists of the following components:

GMC INSTRUMENTS

Camille Bauer Metrawatt AG Aargauerstrasse 7 = 5610 Wohlen = Switzerland TEL +41 56 618 21 11 = FAX +41 56 618 21 21

www.camillebauer.com = info@cbmag.com